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NOTE

On the Accuracy and Stability of Explicit Schemes for
Multidimensional Linear Homogeneous Advection Equations

1. INTRODUCTION 2. THE TWO-DIMENSIONAL CASE

In two space dimensions the linear advection equationIn [1] Roe provided, in a simple form, conditions which
determine the accuracy of a numerical scheme for the can be written as
solution of the one-dimensional linear advection equation

ut 1 aux 1 buy 5 0, (5)
ut 1 aux 5 0, (1)

where a is a constant wavespeed, by considering a general where a and b are constant wavespeeds. Schemes for (5)
scheme for (1) in the form on regular, Cartesian grids in the form

un11
i 5 O

a

Aaun
i1a , (2)

un11
i, j 5 O

a,b
Aa,bun

i1a, j1b (6)

where un
i 5 u(i Dx, n Dt), hAaj is a finite set of constant,

nonzero coefficients, Dx is the constant mesh spacing, and will be considered, where un
i, j 5 u(i Dx, j Dy, n Dt), Dx and

Dt is the timestep. Define the Courant number as n 5 Dy define the mesh spacing in the x and y directions, and
a Dt/Dx. Roe proved the following two theorems. hAa,bj form a finite set of constant, nonzero coefficients.

Define the directional Courant numbers nx 5 a Dt/Dx andTHEOREM 1. If un
i is a polynomial of degree p in i,

ny 5 b Dt/Dy. In two dimensions, Theorem 1 becomesscheme (2) will give the exact solution to (1) if and only if

THEOREM 3. If un
i, j is a polynomial of degree p in i andO

a

aqAa 5 (2n)q (3) j, scheme (6) will give the exact solution of (5) if and only if

for all integers q such that 0 # q # p. O
a,b

aqbrAa,b 5 (2nx)q(2ny)r (7)

THEOREM 2. If scheme (2) meets the conditions of Theo-
rem 1, the leading term in its pointwise error is

for all integer pairs (q, r) such that q $ 0, r $ 0 and q 1
r # p.

a Dx p

n(p 1 1)! F(2n)p11 2 O
a

ap11AaG ­p11

­x p11 u. (4)
Proof. Choose a basis for the set of two-dimensional

polynomials as
These two theorems enabled the following definition.

DEFINITION 1. Any scheme of the form (2) for the one- hxqyrjq,r (8)
dimensional linear advection equation (1) that satisfies the
conditions in Theorem 1 is called pth-order accurate in space

for integers q, r. It is only necessary to consider the perfor-and time.
mance of the scheme on the general basis element; i.e., set

The aim of this paper is to extend Roe’s result to two
and three dimensions. Methods of finding stability restric-

un
a,b 5 (a Dx)q(b Dy)r. (9)tions on multidimensional schemes are also discussed.
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Without loss of generality, only the origin (0, 0) is consid- Expanding both terms in brackets as Taylor series gives
ered. Performing one timestep of (6) at (0, 0) gives

un11
0,0 5 O

a,b
Aa,b(a Dx)q(b Dy)r. (10) P(0, 0) 5

1
Dt FOq,r

(2a Dt)q

q!
(2b Dt)r

r!
un

(qx)(ry)

(19)

The exact solution is 2 O
a,b

Aa,b SO
q,r

(a Dx)q

q!
(b Dy)r

r!
un

(qx)(ry)DG,

un11
0,0 5 u(2a Dt, 2b Dt, n Dt) 5 (2a Dt)q(2b Dt)r. (11)

where the derivatives un
(qx)(ry) are taken at the origin. Rear-

ranging givesTherefore the scheme gives the exact solution if and only if

O
a,b

Aa,b(a Dx)q(b Dy)r 5 (2a Dt)q(2b Dt)r; (12)
P(0, 0) 5

1
Dt FOq,r

(2a Dt)q

q!
(2b Dt)r

r!
(20)

i.e.,
3 S1 2

1
nq

x

1
n r

y
O
a,b

(2a)q(2b)rAa,bD un
(qx)(ry)G.

O
a,b

aqbrAa,b 5 (2nx)q(2ny)r (13)

If the conditions in Theorem 3 hold, then the terms in (20)
with q 1 r # p vanish, and the first terms in the pointwisefor all (q, r) such that q $ 0, r $ 0 and q 1 r # p. This is
error have the formthe required result, and the theorem is proved.

THEOREM 4. If scheme (6) meets the conditions in Theo-
rem 3, then the leading terms in the pointwise error have 1

Dt
(2a Dt)q

q!
(2b Dt)r

(r)!
(21)the form

3 S1 2
1
nq

x

1
n r

y
O
a,b

(2a)q(2b)rAa,bD u(qx)(ry) ,1
Dt

Dxq

q!
Dyp112q

(p 1 1 2 q)!
? Dq ? un

(qx)((p112q)y) , (14)

where q 1 r 5 p 1 1. This can be written as (14), (15) bywhere
using the identity r 5 p 1 1 2 q and rearranging. Hence
the theorem is proved.

Dq 5 (2nx)q(2ny)p112q 2 O
a,b

aqbp112qAq,p112q (15)
Theorems 3 and 4 enable the following definition.

DEFINITION 2. Any scheme of the form (6) for the two-for some integer q such that 0 # q # p 1 1, and
dimensional linear advection equation (5) that satisfies the
conditions in Theorem 3 is called pth-order accurate in

un
(qx)(ry) 5

­

­xq­yr un. (16) space and time.

COROLLARY 1. Any scheme of the form (6) for the two-
dimensional linear advection equation (5) must satisfyProof. The pointwise error is defined as the difference

between the exact solution and the numerical solution di-
vided by the timestep. Without loss of generality, consider
the origin (0, 0). The pointwise error here is N 5 Op11

i51
i (22)

P(0, 0) 5
1
Dt

[u(0, 0, (n 1 1) Dt) 2 un11
0,0 ] (17)

conditions for pth-order accuracy, and therefore must have
a stencil of at least N points.

5
1
Dt Fu(2a Dt, 2b Dt, n Dt) 2 O

a,b
Aa,bun

a,bG. (18)
Proof. Follows easily from Theorem 3.
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3. THE THREE-DIMENSIONAL CASE DEFINITION 3. Any scheme of the form (24) for the
three-dimensional linear advection equation (23) that satis-

In three space dimensions the linear advection equation fies the conditions in Theorem 5 is called pth-order accurate
can be written as in space and time.

COROLLARY 2. Any scheme of the form (24) for the
ut 1 aux 1 buy 1 cuz 5 0, (23) three-dimensional linear advection equation (23) must

satisfy
where a, b, and c are constant wavespeeds. Schemes for
(5) of the form

N 5 Op11

j51
SOj

i51
iD (29)

un11
i, j,k 5 O

a,b,c
Aa,b,cun

i1a, j1b,k1c (24)

conditions for pth-order accuracy, and therefore must have
a stencil of at least N points.will be considered, where un

i, j,k 5 u(i Dx, j Dy, k Dz, n Dt),
Dx, Dy, and Dz define the mesh spacing in the x, y, and z Proof. Follows easily from Theorem 5.
directions, respectively, and hAa,b,cj form a finite set of
constant, nonzero coefficients. Define directional Courant 4. STABILITY
numbers as nx 5 a Dt/Dx, ny 5 b Dt/Dy, and nz 5
c Dt/Dz. In this case Theorem 1 becomes The stability of advection schemes is obviously as im-

portant as their accuracy. However, the application of stan-
THEOREM 5. If un

i, j,k is a polynomial of degree p in i, j, dard stability analysis techniques, such as von Neumann
and k, scheme (24) will give the exact solution of (23) if stability analysis, to schemes in two and three dimensions
and only if is notoriously hard, due to the complexity of algebraic

expressions encountered when applying these techniquesO
a,b,c

aqbrcsAa,b,c 5 (2nx)q(2ny)r(2nz)s (25) in multiple dimensions. Indeed, even determining the sta-
bility of a scheme in one space dimension can be hard if
the scheme has a large stencil, or has many unspecified

for all integer triples (q, r, s) such that q $ 0, r $ 0, s $ 0, parameters in its coefficients. In the previous sections we
and q 1 r 1 s # p. have derived conditions on the coefficients of general ex-

plicit schemes that determine the accuracy of multidimen-
THEOREM 6. If scheme (24) meets the conditions in The- sional schemes for linear advection; one would hope it is

orem 5, then the leading terms in the pointwise error have possible to derive fairly simple conditions on the coeffi-
the form cients of general schemes that determine stability restric-

tions on those schemes. To our knowledge, such general
conditions do not yet exist in the literature. The authors1

Dt
Dxq

q!
Dyr

r!
Dzp112q2r

(p 1 1 2 q 2 r)!
? Dq,r ? un

(qx)(ry)((p112q2r)z) , (26)
have derived general conditions for three-point explicit
centered schemes for advection–diffusion in one space di-
mension [2]; however an extension of these conditions towhere
general n-point schemes or multiple dimensions has not
yet been found. The simplest approach known to the au-

Dq,r 5 (2nx)q(2ny)r(2nz)p112q2r

(27)
thors for obtaining a reliable indication of the stability
of a scheme when the algebra associated with standard2 O

a,b,c
aqbrcp112q2rAq,r,p112q2r

techniques becomes intractable has been presented in
[3, 4]. We now briefly describe this technique. Consider the
case of a two-dimensional scheme in which the coefficientsfor some integer pair (q, r) such that q $ 0, r $ 0, 0 #
depend only on the parameters nx and ny . An algebraicq 1 r # p 1 1, and
expression for the von Neumann amplification factor S for
such schemes can be found, though some manipulation
may be required. For a given pair (nx , ny) one can numeri-un

(qx)(ry)(sz) 5
­

­xq ­yr ­zs un. (28)
cally evaluate S for many thousands of pairs u, f of phase
angles in the x and y directions, and record the proportion
p(nx , ny) of these pairs for which S # 1, i.e., for which theThe proof of Theorems 5 and 6 follows easily from the

two-dimensional case. They lead to the definition. scheme is stable. If p(nx , ny) 5 1, we assume the scheme
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is stable; otherwise it is unstable. This can be repeated for
2 Ak(2 2 nx)ny(1 2 ny)(2 2 nz)un

i, j11,k 2 Aknxny(1 2 ny)(2 2 nz)un
i21, j11,kmany pairs (nx , ny) in a region slightly larger than the

expected ‘‘stability region(s)’’ of the scheme. A contour 2 Ak(2 2 nx)ny(1 2 ny)nzun
i, j11,k21 2 Aknxny(1 2 ny)nzun

i21, j11,k21

plot of p(nx , ny) in the nx 2 ny plane then indicates the
2 Ak(2 2 nx)(2 2 ny)nz(1 2 nz)un

i, j,k11 2 Ak(2 2 nx)nynz(1 2 nz)un
i, j21,k11stability region(s) of the scheme: these will be the region(s)

where p(nx , ny) is constant and equal to 1. The extension 2 Aknx(2 2 ny)nz(1 2 nz)un
i21, j,k11 2 Aknxnynz(1 2 nz)un

i21, j21,k11 .
of this approach to schemes whose coefficients depend on

(31)
different parameters, and/or to schemes in three dimen-
sions, is obvious. See [3, 4] for application to specific Application of conditions (25) to this scheme shows that
schemes. it is also second-order accurate in space and time. It is left

to the reader to verify that the application of the accuracy
5. EXAMPLES conditions given here is far less time consuming than

applying truncation error analysis directly to the schemes.
The author has found the accuracy conditions discussed Applying the technique discussed in the last section indi-

in sections 2 and 3 useful for determining the accuracy of cates that the scheme is stable provided maxhnx , ny ,
schemes for linear advection. For example, consider the nzj # Sd. See [3] or [4] for the relevant contour plots.
two-dimensional scheme of LeVeque [5] applied to the
linear advection equation (5) with positive speeds: 6. SUMMARY

Conditions on the coefficients of schemes for the solutionun11
i, j 5 (1 2 n2

x 2 n2
y 1 nxny)un

i, j
of the two and three dimensional linear advection equa-

2 Asnx(1 2 nx)un
i11, j 2 Asny(1 2 ny)un

i, j11 (30) tions that guarantee the schemes are pth-order accurate in
space and time have been presented. Two examples of

1 Asnx(1 1 nx 2 ny)un
i21, j 1 Asny(1 1 ny 2 nx)un

i, j21 schemes have been given, one in two dimensions and one
in three dimensions, where these accuracy conditions have1 nxnyun

i21, j21 .
proven useful. A technique that gives a good indication of
the stability conditions of a scheme when conventionalApplication of the accuracy conditions (7) to this scheme
methods prove intractable has also been described.shows that it is second-order accurate in space and time.
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z]un
i, j,k

3. S. J. Billett, ‘‘A Class of Upwind Methods for Conservation Laws,’’
Ph.D thesis, College of Aeronautics, Cranfield University, UK, 19941 Aknx[(1 1 nx)(2 2 ny)(2 2 nz) 2 2n2

y(2 2 nz) 2 2(2 2 ny)n2
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1 Akny[(2 2 nx)(1 1 ny)(2 2 nz) 2 2n2
x(2 2 nz) 2 2(2 2 nx)n2

z]un
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1 Aknxny[(2 2 nz)(2 1 nx 1 ny) 2 2n2
z]un

i21, j21,k
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